Recovering ensembles of chromatin conformations from contact probabilities

نویسندگان

  • Dario Meluzzi
  • Gaurav Arya
چکیده

The 3D higher order organization of chromatin within the nucleus of eukaryotic cells has so far remained elusive. A wealth of relevant information, however, is increasingly becoming available from chromosome conformation capture (3C) and related experimental techniques, which measure the probabilities of contact between large numbers of genomic sites in fixed cells. Such contact probabilities (CPs) can in principle be used to deduce the 3D spatial organization of chromatin. Here, we propose a computational method to recover an ensemble of chromatin conformations consistent with a set of given CPs. Compared with existing alternatives, this method does not require conversion of CPs to mean spatial distances. Instead, we estimate CPs by simulating a physically realistic, bead-chain polymer model of the 30-nm chromatin fiber. We then use an approach from adaptive filter theory to iteratively adjust the parameters of this polymer model until the estimated CPs match the given CPs. We have validated this method against reference data sets obtained from simulations of test systems with up to 45 beads and 4 loops. With additional testing against experiments and with further algorithmic refinements, our approach could become a valuable tool for researchers examining the higher order organization of chromatin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient estimation of contact probabilities from inter-bead distance distributions in simulated polymer chains.

The estimation of contact probabilities (CP) from conformations of simulated bead-chain polymer models is a key step in methods that aim to elucidate the spatial organization of chromatin from analysis of experimentally determined contacts between different genomic loci. Although CPs can be estimated simply by counting contacts between beads in a sample of simulated chain conformations, reliabl...

متن کامل

Higher-order chromatin structure: bridging physics and biology.

Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental ...

متن کامل

Molecular ensembles make evolution unpredictable

Evolutionary prediction is of deep practical and philosophical importance. Here we show, using a simple computational protein model, that protein evolution remains unpredictable, even if one knows the effects of all mutations in an ancestral protein background. We performed a virtual deep mutational scan-revealing the individual and pairwise epistatic effects of every mutation to our model prot...

متن کامل

A constant extension ensembles model of double-stranded chain molecules

Because the constant extension ensemble of single chain molecule is not always equivalent with constant force ensemble, a model of double-stranded conformations, as in RNA molecules and βsheets in proteins, with fixed extension constraint is built in this paper. Based on polymer-graph theory and the self-avoiding walks, sequence dependence and excluded-volume interactions are explicitly taken i...

متن کامل

Energy functions that discriminate X-ray and near native folds from well-constructed decoys.

This study generates ensembles of decoy or test structures for eight small proteins with a variety of different folds. Between 35,000 and 200,000 decoys were generated for each protein using our four-state off-lattice model together with a novel relaxation method. These give compact self-avoiding conformations each constrained to have native secondary structure. Ensembles of these decoy conform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013